Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6557, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848436

RESUMEN

This study introduces a method that is applicable across various powder materials to predict process conditions that yield a product with a relative density greater than 98% by laser powder bed fusion. We develop an XGBoost model using a dataset comprising material properties of powder and process conditions, and its output, relative density, undergoes a transformation using a sigmoid function to increase accuracy. We deeply examine the relationships between input features and the target value using Shapley additive explanations. Experimental validation with stainless steel 316 L, AlSi10Mg, and Fe60Co15Ni15Cr10 medium entropy alloy powders verifies the method's reproducibility and transferability. This research contributes to laser powder bed fusion additive manufacturing by offering a universally applicable strategy to optimize process conditions.

2.
Nat Commun ; 14(1): 145, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627295

RESUMEN

Demands for ultrahigh strength in structural materials have been steadily increasing in response to environmental issues. Maraging alloys offer a high tensile strength and fracture toughness through a reduction of lattice defects and formation of intermetallic precipitates. The semi-coherent precipitates are crucial for exhibiting ultrahigh strength; however, they still result in limited work hardening and uniform ductility. Here, we demonstrate a strategy involving deformable semi-coherent precipitates and their dynamic phase transformation based on a narrow stability gap between two kinds of ordered phases. In a model medium-entropy alloy, the matrix precipitate acts as a dislocation barrier and also dislocation glide media; the grain-boundary precipitate further contributes to a significant work-hardening via dynamic precipitate transformation into the type of matrix precipitate. This combination results in a twofold enhancement of strength and uniform ductility, thus suggesting a promising alloy design concept for enhanced mechanical properties in developing various ultrastrong metallic materials.

3.
Small ; 18(2): e2104944, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34802184

RESUMEN

The charging process of secondary batteries is always associated with a large volume expansion of the alloying anodes, which in many cases, develops high compressive residual stresses near the propagating interface. This phenomenon causes a significant reduction in the rate performance of the anodes and is detrimental to the development of fast-charging batteries. However, for the Na-Sn battery system, the residual stresses that develop near the interface are not stored, but are relieved by the generation of high-density dislocations in crystalline Sn. Direct-contact diffusion experiments show that these dislocations facilitate the preferential transport of Na and accelerate the Na diffusion into crystalline Sn at ultrafast rates via "dislocation-pipe diffusion". Advanced analyses are performed to observe the evolution of atomic-scale structures while measuring the distribution and magnitude of residual stresses near the interface. In addition, multi-scale simulations that combined classical molecular dynamics and first-principles calculations are performed to explain the structural origins of the ultrafast diffusion rates observed in the Na-Sn system. These findings not only address the knowledge gaps regarding the relationship between pipe diffusion and the diffusivity of carrier ions but also provide guidelines for the appropriate selection of anode materials for use in fast-charging batteries.

4.
Nano Lett ; 21(21): 9044-9051, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714657

RESUMEN

The fabrication of battery anodes simultaneously exhibiting large capacity, fast charging capability, and high cyclic stability is challenging because these properties are mutually contrasting in nature. Here, we report a rational strategy to design anodes outperforming the current anodes by simultaneous provision of the above characteristics without utilizing nanomaterials and surface modifications. This is achieved by promoting spontaneous structural evolution of coarse Sn particles to 3D-networked nanostructures during battery cycling in an appropriate electrolyte. The anode steadily exhibits large capacity (∼480 mAhg-1) and energy retention capability (99.9%) during >1500 cycles even at an ultrafast charging rate of 12 690 mAg-1 (15C). The structural and chemical origins of the measured properties are explained using multiscale simulations combining molecular dynamics and density functional theory calculations. The developed method is simple, scalable, and expandable to other systems and provides an alternative robust route to obtain nanostructured anode materials in large quantities.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823902

RESUMEN

We investigate the early stage of carbon nanotube (CNTs) growth on Inconel 600 to address the effect of pretreatments such as annealing and plasma pretreatment on growth behavior. In addition, we compare the growth results to other Ni-based superalloys including Invar 42 and Hastelloy C276. The growth substrates were prepared using mechanical polish, thermal annealing and plasma pretreatment. The air annealing was performed at 725 °C for 10 min and plasma pretreatment was subsequently undergone with 10.5 W at 500 °C for 30 min. The annealed and plasma-pretreated substrates exhibited different surface morphologies on the surface and enhanced growth behavior of CNT was observed from the region of particulate surface. The optimized growth temperature, which produces the highest CNT height, was determined at 525 °C for Ni and Inconel 600 and 625 °C for Invar 42 and Hastelloy C276 substrates. The difference of optimal growth temperature is expected to the existence of high temperature elements such as Mn or Mo in the alloys. X-ray diffraction spectroscopy revealed that the formation of roughened oxide layers caused by the pretreatments would promote the nucleation and growth of the CNTs.

6.
ACS Nano ; 13(11): 12613-12620, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31525030

RESUMEN

MXenes have attracted great attention for their potential applications in electrochemical and electronic devices due to their excellent characteristics. Traditional sound sources based on the thermoacoustic effect demonstrated that a conductor needs to have an extremely low heat capacity and high thermal conductivity. Hence, a thin MXene film with a low heat capacity per unit area (HCPUA) and special layered structure is emerging as a promising candidate to build loudspeakers. However, the use of MXenes in a sound source device has not been explored. Herein, we have successfully prepared sound source devices on an anodic aluminum oxide (AAO) and a flexible polyimide (PI) substrates by using the prepared Ti3C2 MXene nanoflakes. Due to the larger interlayer distance of MXene, the MXene-based sound source device has a higher sound pressure level (SPL) than that of graphene of the same thickness. High-quality Ti3C2 MXene nanoflakes were fabricated by selectively etching the Ti3AlC2 powder. The as-fabricated MXene sound source device on an AAO substrate exhibits a higher SPL of 68.2 dB (f = 15 kHz) and has a very stable sound spectrum output with frequency varying from 100 Hz to 20 kHz. A theoretical model has been built to explain the mechanism of the sound source device on an AAO substrate, matching well with the experimental results. Furthermore, the MXene sound source device based on a flexible PI substrate has been attached to the arms, back of the hand, and fingers, indicating an excellent acoustic wearability. Then, the MXene film is packaged successfully into a commercial earphone case and shows an excellent performance at high frequencies, which is very suitable for human audio equipment.

7.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261816

RESUMEN

Zinc oxide (ZnO) nanomaterials were efficiently synthesized using a microwave plasma torch system at atmospheric pressure. The Zn powder was passed through a microwave plasma region, in which it melted and vaporized. Tetrapod-type ZnO nanomaterials with a diameter of 29.8 ± 8.0 nm were synthesized using a high-purity O2/N2 mixed gas. In particular, ZnO nanowires with a diameter of 109.5 ± 8.0 nm and a length of 5-6 µm were produced using an inexpensive compressed air as a microwave plasma gas. It was confirmed that the nanowires synthesized using the compressed air showed higher light absorption in the visible region than the tetrapod-type ZnO. In addition, the redshifts in the absorption peak and photoluminescence peak were observed from 370.6 to 375.2 nm and 380 to 390 nm, respectively. The obtained results can be explained by the change of energy levels due to the defects in the ZnO nanowires such as vacancies and interstitials of Zn and oxygen. Finally, we can conclude that cost-effective compressed air is appropriate not only for the synthesis of ZnO nanowire, but also the enlargement of optical absorption and emission range.

8.
Nanoscale ; 11(17): 8387-8393, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30984957

RESUMEN

Two-dimensional (2D) transition metal carbides (MXenes) exhibit outstanding performances in many applications, such as energy storage, optoelectronics, and electrocatalysts. However, colloidal solutions of Ti3C2Tx MXene flakes deteriorate rapidly under ambient conditions due to the conversion of the titanium carbide to titanium dioxide. Here, we discuss the dominant factors influencing the rate of oxidation of Ti3C2Tx MXene flakes, and present guidelines for their storage with the aim of maintaining the intrinsic properties of the as-prepared material. The oxidation stability of the Ti3C2Tx flakes is dramatically improved in a system where water molecules and temperature were well-controlled. It was found that aqueous solutions of Ti3C2Tx MXene can be chemically stable for more than 39 weeks when the storage temperature (-80 °C) is sufficiently low to cease the oxidation processes. It was also found that if the Ti3C2Tx flakes are dispersed in ethanol, the degradation process can be significantly delayed even at 5 °C. Moreover, the oxidation stability of the Ti3C2Tx flakes is dramatically improved in both cases, even in the presence of oxygen-containing atmosphere. We demonstrate practical applications of our approach by employing Ti3C2Tx in a gas sensor showing that when oxidation is inhibited, the device can retain the original electrical properties after 5 weeks of storage.

9.
Sci Rep ; 9(1): 6163, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992512

RESUMEN

Quasi-static and dynamic compressive properties of an FCC-based metastable HEA (composition; V10Cr10Fe45Co35 (at.%)) showing both Transformation Induced Plasticity (TRIP) and TWinning Induced Plasticity (TWIP) were investigated at room and cryogenic temperatures. During the quasi-static and dynamic compression at room temperature, the FCC to BCC TRIP occurred inside FCC grains, and resulted in very high strain-hardening rate and consequently maximum compressive strength over 1.6 GPa. The dynamic compressive strength was higher by 240 MPa than the quasi-static strength because of strain-rate-hardening effect, and kept increasing with a high strain-hardening rate as the twinning became activated. The cryogenic-temperature strength was higher than the room-temperature strength as the FCC to BCC TRIP amount increased by the decrease in stability of FCC phase with decreasing temperature. Under dynamic loading at cryogenic temperature, twins were not formed because the increase in SFE due to adiabatic heating might not be enough to reach the TWIP regime. However, the dynamically compressed specimen showed the higher strength than the quasi-statically compressed specimen as the strain-rate-hardening effect was added with the TRIP.

10.
Sci Rep ; 8(1): 16015, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375467

RESUMEN

Using molecular dynamics simulations, we characterized the generation and evolution of radiation-induced point defects in the CoCrFeMnNi high-entropy alloy (HEA), to compare it with pure Ni and pure Fe. The generation of primary point defects was investigated by a cascade simulation at 773 K and the evolution of point defect clusters by a defect evolution simulation using 1 at% defect-containing samples. The numbers of residual defects after cascade and surviving defects after evolution in the CoCrFeMnNi HEA are smaller than those in pure Ni and pure Fe. The defect clusters appearing in the CoCrFeMnNi HEA after the defect evolution are unstable because of the alloy complexity. The origin of the slower radiation damage accumulation and the higher radiation damage tolerance in the CoCrFeMnNi HEA is discussed.

11.
Data Brief ; 20: 1337-1339, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30246113

RESUMEN

XRD raw data of the milled and heat-treated Co,Fe,Mn,Ni,Zn-containing high-entropy alloys (HEAs) is presented. Complete description of the quaternary, quinary and senary binary priority lists, including the names of the most relevant binary sets of elements for solid solution screening and the details of the parametric criterion used for making these lists are offered alongside a detailed thermodynamic description used to design Co,Fe,Mn,Ni,Zn-containing HEAs. In addition, a complete parametric study for quaternary, quinary and senary HEAs is shown. All the files and codes necessary to replicate and modify the previously mentioned results are available; commented by the authors in order to facilitate their usage. For further interpretation follow the research article: An approach for screening single phase high-entropy alloys using an in-house thermodynamic database (Tapia et al., 2018).

12.
Sci Rep ; 8(1): 11074, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038305

RESUMEN

In this work, the mechanical characteristics of high-entropy alloy Co20Cr26Fe20Mn20Ni14 with low-stacking fault energy processed by cryogenic and room temperature high-pressure torsion (HPT) were studied. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses were performed to identify the phase and microstructure variation and the mechanical properties characterized by Vickers hardness measurements and tensile testing. Cryogenic HPT was found to result in a lower mechanical strength of alloy Co20Cr26Fe20Mn20Ni14 than room temperature HPT. Microstructure analysis by SEM and TEM was conducted to shed light on the microstructural changes in the alloy Co20Cr26Fe20Mn20Ni14 caused by HPT processing. Electron microscopy data provided evidence of a deformation-induced phase transformation in the alloy processed by cryogenic HPT. Unusual softening phenomena induced by cryogenic HPT were characterized by analyzing the dislocation density as determined from X-Ray diffraction peak broadening.

13.
Sci Rep ; 6: 26333, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245687

RESUMEN

In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and ß (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

14.
Proc Natl Acad Sci U S A ; 111(18): 6560-5, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753563

RESUMEN

The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.

15.
J Phys Condens Matter ; 24(22): 225002, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22517273

RESUMEN

An interatomic potential for pure phosphorus, an element that has van der Waals, covalent and metallic bonding character, simultaneously, has been developed for the purpose of application to metal-phosphorus systems. As a simplification, the van der Waals interaction, which is less important in metal-phosphorus systems, was omitted in the parameterization process and potential formulation. On the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) interatomic potential formalism applicable to both covalent and metallic materials, a potential that can describe various fundamental physical properties of a wide range of allotropic or transformed crystalline structures of pure phosphorus could be developed. The potential was then extended to the Fe-P binary system describing various physical properties of intermetallic compounds, bcc and liquid alloys, and also the segregation tendency of phosphorus on grain boundaries of bcc iron, in good agreement with experimental information. The suitability of the present potential and the parameterization process for atomic scale investigations about the effects of various non-metallic impurity elements on metal properties is demonstrated.

16.
Nanotechnology ; 23(10): 105607, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22362281

RESUMEN

The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900 °C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60 min at 900 °C produced a reduction of nanoparticle diameter from 2.6 to 1.8 nm and a decrease in the mean tube diameter from 1.2 to 0.8 nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.

17.
Nano Lett ; 12(2): 855-60, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22268369

RESUMEN

Planar defects in compound (III-V and II-VI) semiconductor nanowires (NWs), such as twin and stacking faults, are universally formed during the catalytic NW growth, and they detrimentally act as static disorders against coherent electron transport and light emissions. Here we report a simple synthetic route for planar-defect free II-VI NWs by tunable alloying, i.e. Cd(1-x)Zn(x)Te NWs (0 ≤ x ≤ 1). It is discovered that the eutectic alloying of Cd and Zn in Au catalysts immediately alleviates interfacial instability during the catalytic growth by the surface energy minimization and forms homogeneous zinc blende crystals as opposed to unwanted zinc blende/wurtzite mixtures. As a direct consequence of the tunable alloying, we demonstrated that intrinsic energy band gap modulation in Cd(1-x)Zn(x)Te NWs can exploit the tunable spectral and temporal responses in light detection and emission in the full visible range.


Asunto(s)
Aleaciones/química , Cadmio/química , Oro/química , Nanocables/química , Telurio/química , Zinc/química , Catálisis , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
18.
J Nanosci Nanotechnol ; 11(7): 6084-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22121663

RESUMEN

The results of the thermal oxidation of synthesized graphenes and their optical property characterization using Raman spectroscopy are reported. Graphene was synthesized via thermal-chemical vapor deposition on Ni catalytic thin films deposited by electron beam deposition, and was successfully transferred onto three-dimensional trench substrates to obtain a suspended structure, which is the most appropriate template for use in probing the changes of physical properties of graphene by ignoring the substrate effects. The thermal oxidation was performed in a tube furnace at an elevated temperature of 500 degrees C under air, and Raman analysis was repeatedly carried out to investigate the oxidation effects. A drastic structural change of graphene was anticipated from the based on the dramatic changes in the Raman spectra. It is expected that controlled oxidation will help systematically decrease in the number of graphene layers, which will contribute to the successful development of graphene-based devices that are capable of operating under oxidative environments.

19.
Nanoscale Res Lett ; 5(11): 1768-1773, 2010 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21124624

RESUMEN

We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850-1,000°C and 2-8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

20.
J Phys Condens Matter ; 22(17): 175702, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21393675

RESUMEN

An interatomic potential for the Fe-Al binary system has been developed based on the modified embedded-atom method (MEAM) potential formalism. The potential can describe various fundamental physical properties of Fe-Al binary alloys--structural, elastic and thermodynamic properties, defect formation behavior and interactions between defects--in reasonable agreement with experimental data or higher-level calculations. The applicability of the potential to atomistic investigations of various defect formation behaviors and their effects on the mechanical properties of high aluminum steels as well as Fe-Al binary alloys is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...